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As Landauer’s Principle and Szilard’s engine illustrate, the reduction of a system’s entropy costs
work, while its increase can be used to extract work from a heat bath. One consequence in standard
thermodynamics is that correlations have work value: the total entropy of two correlated systems is
less than the sum of their local entropies, and thus work can be extracted if this correlation is con-
sumed. In this paper, we show that the situation is surprisingly different for microscopic and quan-
tum systems far from the thermodynamic limit: quite the contrary, absence of correlations can be used to
extract work. Recently, it has been shown that the possible state transitions in the microscopic regime
are severely limited by an infinite family of “second laws”. We show that stochastic independence,
if consumed as a resource, allows to overcome these limitations, to extract additional work reliably,
and to achieve all state transitions that are otherwise only possible in the thermodynamic limit. Our
result also yields an operational non-asymptotic characterization of von Neumann (neg-)entropy in
terms of a majorization relation which generalizes the trumping relation from entanglement theory.

There has recently been a surge of interest in studying
thermodynamics for small classical and quantum sys-
tems beyond the thermodynamic limit [1–10]. It has
been shown that thermodynamics in the microscopic
regime differs significantly from its macroscopic coun-
terpart: for example, the work extractable from a quan-
tum state is in general smaller than the work needed
to create that state [3]; additional quantum systems can
be used as “catalysts” to facilitate state transitions; and
the second law is replaced by an infinite family of con-
straints that must be satisfied by any spontaneous pro-
cess [4].

In this work, we demonstrate another crucial differ-
ence between the two regimes, namely, that stochastic in-
dependence (that is, absence of correlations) can be used
to extract work in the microscopic regime. Quite the
contrary, this is impossible in the thermodynamic limit,
that is, the regime described by the standard laws of
thermodynamics. To see this, imagine a large ensemble
of quantum systems, each of them in a quantum state
⇢AB , on a tensor product of Hilbert spaces A,B of di-
mensions dA, dB < 1. If this state is correlated, that is
⇢AB 6= ⇢A ⌦ ⇢B , then

I(⇢AB) > I(⇢A) + I(⇢B), (1)

with I(⇢) := log d⇢ � H(⇢) the negentropy of ⇢, where
H(⇢) := �tr(⇢ log ⇢) is von Neumann entropy and d⇢
the Hilbert space dimension. It is well-known [11] that a
quantum state whose negentropy is I(⇢) (with all energy
levels fully degenerate) can be used to draw I(⇢)kBT of
average work per particle from a heat bath at tempera-
ture T , where kB is Boltzmann’s constant. Likewise, this
amount of work has to be spent to create a large number
of systems in state ⇢ from maximally mixed states. These
insights are illustrated by the well-known thought ex-
periments of Landauer erasure and the Szilard engine.
Thus, the subadditivity of von Neumann entropy, and
its consequence (1), show that we can always draw more
work (I(⇢AB)kBT ) from a correlated state than from the
corresponding uncorrelated state ((I(⇢A) + I(⇢B))kBT ).

In other words, if we have a thermodynamic transi-
tion from a product state ⇢A ⌦ ⇢B to a correlated state
⇢AB , while keeping the local reduced states constant,
then this transition must always consume work, which
manifests itself in several research results on the impact
of correlations in thermodynamics [12–14]. However,
we will now show that the analogous process in the mi-
croscopic regime, as depicted in Figure 1, allows for a
work gain.

noisy
operation as in (2)

system

k catalysts

Figure 1: We model the use of stochastic independence as a “fuel”

by considering state transitions ⇢ ! � in conjunction with k “cata-

lysts”, initially uncorrelated, in states ⌧1, . . . , ⌧k. After the thermo-

dynamic process, the catalysts must be retained exactly in their initial

states, but we allow correlations to build up, resulting in a joint state

⌧1,2,...,k that still has ⌧1, . . . , ⌧k as local marginals. This is a non-

cyclic process, consuming stochastic independence as a resource. It

turns out that state transitions ⇢ ! � are possible to arbitrary accu-

racy if and only if H(⇢)  H(�) for the von Neumann entropy.

Thermodynamics as a resource theory. A fruitful method
to study the thermodynamics of small quantum sys-
tems is to reformulate it as a resource theory. This ap-
proach, which has also been applied to entanglement
theory [15], models the fact that there is often only a
limited amount of control that is in principle possible
when interacting with a quantum system. Given the
corresponding set of restrictions, one can ask for the ul-
timate limits of state transitions that are possible within
the set of allowed operations, and answer general ques-
tions about the interconvertibility of resources.
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More concretely, we work within the resource theory
of nonuniformity [16, 17]. Given any quantum system A
in the state ⇢A, one is allowed to add on a maximally
mixed state �E = 1/dE on any ancilla quantum system
E, apply any unitary U on the total system, and trace
out arbitrary subsystems. The possible operations can
then all be written in the form

E(⇢) := TrE0

h
UAE (⇢A ⌦ �E)U

†
AE

i
, (2)

where A⌦ E = A0 ⌦ E0 denotes two decompositions of
the total Hilbert space, such that E is a map from quan-
tum system A to A0. Maps of the form (2) are called
noisy operations. Energy is not directly modelled within
this resource theory; all Hamiltonians are implicitly as-
sumed to be fully degenerate. However, as suggested
in [5, 6], one can still consider work extraction indirectly
by first extracting as many pure qubits as possible via
maps of the form (2), and then using these pure qubits
in a Szilard engine (or in ways described in [11]) to ex-
tract work from a heat bath.

This can be quantified by considering sharp states [17]
�I , which for I 2 N are just a collection of I pure qubits:
�I = | ih |⌦I , with | i 2 C2 an arbitrary pure state.
If I is not an integer, but of the form I = log(`/k) with
k, ` 2 N coprime, ` � k, and log ⌘ log

2

, we set

�I = diag(1/k, . . . , 1/k| {z }
k

, 0, . . . , 0| {z }
`�k

),

and one can draw IkBT ln 2 of work from a sharp state
�I , which can be done reliably with success probability
close to unity [18]. Let us write ⇢ noisy�! � if there exists
a noisy operation E as in (2) such that E(⇢) = �. For
work extraction, we are thus asking for the largest I with
⇢

noisy�! �I . The answer turns out to be

I
0

(⇢) := log d⇢ �H
0

(⇢), (3)

where H
0

(⇢) := log rank(⇢). This is in general smaller
then the (von Neumann) negentropy I(⇢) – therefore,
the amount of work that can reliably be extracted from
a single copy of ⇢, I

0

(⇢)kBT ln 2, is in general less than
the amount of work per particle that can be extracted
in the thermodynamic limit, which is I(⇢)kBT ln 2. If
one allows a small probability " > 0 of failure for the
work extraction process, then I

0

(⇢) has to be replaced
by a suitably “smoothed” [19] version I"

0

(⇢), basically
maximizing I

0

over states in an "-close vicinity of ⇢ (for
details see Fig. S2 in [3] and Lemma 79 and Fig. 9 in [17]).
For small " > 0, the extractable work I"

0

(⇢) will gener-
ally still be much smaller than I(⇢). For several concrete
examples of states, see [5].

A general way to decide whether ⇢ noisy�! � for given
states ⇢,� is via majorization [20–23]. For classical
probability distributions p = (p

1

, . . . , pm) and q =

(q
1

, . . . , qm), we say that p majorizes q, and write p � q,
if and only if

Pk
i=1

p#i �
Pk

i=1

q#i for all k = 1, 2, . . . ,m,

where p#
1

� p#
2

� . . . denotes the components of p in
non-increasing order. For quantum states ⇢ and �, we
write ⇢ � � if and only if �(⇢) � �(�), where �(⇢) and
�(�) are the probability distributions of eigenvalues of
⇢ and �. As shown in [16], we have ⇢ noisy�! � for states
⇢,� of the same Hilbert space dimensions if and only if
⇢ � �. If ⇢ and � have different dimensionalities, we
can multiply them with suitably sized maximally mixed
states such that the resulting states have the same size,
and check majorization for those. From this, one can
easily prove (3).

In addition to the previously specified allowed trans-
formations in the resource theory of nonuniformity, one
usually adds one further possibility: namely, to have an
additional quantum state (“catalyst”) ⌧ that is part of
the process, but not altered by it [4]. In other words,
instead of asking whether there is a noisy operation E
with E(⇢) = �, one asks whether there is an operation of
this kind and a state ⌧ such that E(⇢⌦ ⌧) = � ⌦ ⌧ .

For the special case of equal dimensionalities of ⇢ and
�, we say that ⇢ trumps �, and write ⇢ �T �, if there is
a finite-dimensional quantum state ⌧ such that ⇢ ⌦ ⌧ �
� ⌦ ⌧ . In [21], it was shown that there are states such
that ⇢ 6� � but ⇢ �T �; in other words, in some cases, the
presence of an additional catalyst ⌧ enables transitions
⇢! � that are otherwise impossible.

Catalysis does not increase the amount of extractable
work [4] as given in (3), but it expands the set of possible
state transitions. To characterize those, we define the
Burg entropy [24] H

Burg

(⇢) := tr log ⇢, and the Rényi
entropies of order ↵ 2 R \ {0, 1} as

H↵(⇢) :=
sgn(↵)

1� ↵
log tr(⇢↵).

The cases ↵ 2 {�1, 0, 1,+1} are defined via suitable
limits, resulting in H

0

(⇢) = lim↵&0

H↵(⇢) = log rank(⇢),
H

1

(⇢) = �tr(⇢ log ⇢) = H(⇢), H1(⇢) = � log �
max

and
H�1 = log �

min

, where �
max

and �
min

denote the largest
and smallest eigenvalues of ⇢. Analogous definitions
apply to classical discrete probability distributions if we
interpret them as diagonal density matrices. As shown
in [22, 23], these entropies fully characterize the possible
state transitions in the presence of a catalyst: Suppose ⇢
and � are quantum states with �#(⇢) 6= �#(�). Then ⇢ �T �
if and only if H

Burg

(⇢) < H
Burg

(�) and H↵(⇢) < H↵(�) for
all ↵ 2 R \ {0}.

This can be interpreted as an “infinite family of
second laws [4]”: not only von Neumann entropy H ,
but all the Rényi and Burg entropies must increase
during all possible state transitions.

Main results. We now return to the question of the
work value of correlations between states. As depicted
in Figure 1, we consider k independent states ⌧

1

, . . . , ⌧k
that are collectively in a product state, hence uncorre-
lated. We try to obtain a transition from a given state ⇢
to another state � (which may be a sharp state used for
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work extraction) within the resource theory of nonuni-
formity. However, we additionally allow that the “cat-
alysts” ⌧i become correlated with each other during the
process. That is, these states may collectively go from
⌧
1

⌦ . . .⌦ ⌧k to a correlated state ⌧
1,...,k, while exactly re-

taining their individual states, such that ⌧
1,...,k still has

local reduced states ⌧
1

, . . . , ⌧k.
We have previously argued by means of (1) that this

transition necessarily costs energy in the thermodynamic
limit, but we will now see that this is not so in the micro-
scopic regime. In the special case of equal dimensional-
ities of ⇢ and �, the transition in Figure 1 is possible if
and only if

⇢⌦
�
⌧
1

⌦ . . .⌦ ⌧k
�
� � ⌦ ⌧

1,2,...,k. (4)

Let us say that that ⇢ c-trumps �, and write ⇢ �c �, if and
only if there exists k 2 N

0

and a k-partite quantum state
⌧
1,2,...,k such that (4) holds. Trumping is a special case

of c-trumping with k = 1, and majorization is a special
case with k = 0. Clearly, c-trumping is transitive: ⇢ �c �
and � �c ! implies that ⇢ �c !. We also have

⇢ � � ) ⇢ �T � ) ⇢ �c �.

If there are pairs of states ⇢ and � such that ⇢ 6�T � but
⇢ �c �, then this shows that allowing correlations to
build up in the catalysts enables state transitions that are
otherwise impossible. Our main result shows that this is
indeed the case:

Theorem 1. Suppose that ⇢ and � do not have identical sets
of eigenvalues. Then ⇢ �c � if and only if rank(⇢)  rank(�)
and H(⇢) < H(�), for H the von Neumann entropy.

Moreover, we can always choose k = 3 in (4).

It is easy to see that the inequalities for rank and H
are necessary for c-trumping: the Rényi entropies H↵

are subadditive [25, 26] only in the two cases ↵ = 0 and
↵ = 1. Using subadditivity together with additivity and
Schur concavity [17, 20] of H↵, (4) implies for ↵ 2 {0, 1}

H↵(⇢) +

kX

i=1

H↵(⌧i)  H↵(�) +H↵(⌧1,2,...,k)

 H↵(�) +

kX

i=1

H↵(⌧i).

For ↵ = 0 this shows that rank(⇢)  rank(�), and for
↵ = 1 we get H(⇢)  H(�), where equality could hold
only if we had ⌧

1,2,...,k = ⌧
1

⌦ . . . ⌦ ⌧k, which would
imply ⇢ �T � and consequently H(⇢) < H(�).

Before we turn to the complete proof, we discuss
some physical implications. Since the rank is discontin-
uous, the rank inequality itself is not physically mean-
ingful: we can always approximate � to arbitrary accu-
racy by another full-rank state �0. The crucial inequality
is H(⇢)  H(�), which resembles the usual second law
of thermodynamics: entropy has to grow.

Thus, having access to stochastically independent ad-
ditional states that are allowed to become correlated re-
moves the infinite family of “second laws” given by the
Burg and Rényi entropies, and replaces them by a condi-
tion that resembles the standard second law which oth-
erwise only governs the thermodynamic limit. More-
over, it allows to extract additional work:

Theorem 2. Dispensing stochastic independence as an addi-
tional resource allows to extract I(⇢)kBT ln 2 of work from a
single copy of a given state ⇢ reliably by a process depicted in
Figure 1. That is, building up additional correlations allows
to outperform the standard law of microscopic work extraction
in (3).

Proof. We want a transition from ⇢ to a sharp state �I
with I = log(`/k) as large as possible. Choose i, j 2 N
such that d⇢·i = `·j, then ⇢⌦�i and �I⌦�j , with �j = 1/j
the maximally mixed state on Cj , have the same dimen-
sionalities. We can go from ⇢ to �̃I arbitrarily close to �I
by a process as in Figure 1 if and only if ⇢⌦ �i c-trumps
�̃I ⌦ �j . According to Theorem 1, this is equivalent to
H(⇢⌦ �i)  H(�I ⌦ �j), or log(d⇢i)� I(⇢)  log(`j)� I .
Thus, we can achieve I = I(⇢) but not more.

As Bennett [27] suggested, and as formulated in the
resource theory of nonuniformity, we can think of an
“information battery” in the form of a reservoir of pure
bits which may be used for work extraction. Our re-
sult adds a twist to this idea: it is not only the purity
of bits that can be used for work extraction, but also ab-
sence of correlations between them. Stochastic indepen-
dence can be used as a “fuel”; but for this, it is neces-
sary that the bits or catalysts ⌧

1

, . . . , ⌧k themselves are
neither fully thermalized (that is, maximally mixed) nor
completely pure, as we show in Appendix C. Quite sur-
prisingly, since I(⌧

1

⌦ . . .⌦⌧k)  I(⌧
1,...,k), a process like

this necessarily increases the purity of the “stochastic in-
dependence battery” as measured by von Neumann ne-
gentropy, in contrast to the original proposal where the
bits dispense purity and become more mixed.

Theorem 1 also provides an operational charac-
terization of negentropy, or rather of its order of
comparison on density matrices: for two states ⇢,� we
have I(⇢) � I(�) if and only if � can be obtained to ar-
bitrary accuracy from ⇢ by a process as given in Figure 1.

Sketch of proof of Theorem 1. We have to show that
rank(⇢)  rank(�) and H(⇢) < H(�) implies the exis-
tence of a catalyst ⌧

1,...,k satisfying (4). Since majoriza-
tion depends only on the states’ eigenvalues, and since
unitaries are free operations in the resource theory of
nonuniformity, we can diagonalize all states and work
with classical probability distributions. Thus, it is suffi-
cient to prove the following theorem, where we use the
notation rank(p) for the number of non-zero entries of
the probability distribution p = (p

1

, . . . , pm).

Theorem 3. Let p, q 2 Rm be probability distributions with
p# 6= q#. Then there exists k 2 N

0

and a finite k-partite
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probability distribution r
1,2,...,k such that

p⌦ (r
1

⌦ r
2

⌦ . . .⌦ rk) � q ⌦ r
1,2,...,k

if and only if rank(p)  rank(q) and H(p) < H(q).

The given inequalities are necessary by the same argu-
ment as in the quantum case. Sufficiency will be estab-
lished by two lemmas that will both use the following
notation. If q = qA 2 Rm is any probability distribution
on A, we introduce a second system B of size n+ 1 and
a joint probability distribution qAB 2 Rm(n+1) by

qAB :=

0

BBB@

q
1

� a
1

a1
n

a1
n . . . a1

n
q
2

� a
2

a2
n

a2
n . . . a2

n
...

...
...

...
qm � am

am
n

am
n . . . am

n

1

CCCA
, (5)

where 0  ai  qi and n 2 N, using the matrix nota-
tion (qAB)i,j = qAB(i, j). The marginal on A is given by
summing over the rows, yielding qA = (q

1

, . . . , qm) = q,
and the marginal on B is obtained by summing over the
columns,

qB =

⇣
1� a,

a

n
, . . . ,

a

n

⌘
2 Rn+1,

where a =

Pm
i=1

ai. This notation will allow for a cru-
cial observation on catalysis and correlation: there are
distributions p, q such that p 6�T q, i.e. there is no cata-
lyst r with pA ⌦ rB � qA ⌦ rB , but nevertheless

pA ⌦ qB �T qAB , (6)

such that there is another system C and catalyst cC with
pA⌦(qB⌦cC) � qAB⌦cC . That is, a “catalytic” transition
from p to q on A is possible and allows to retrieve the
total catalyst qB ⌦ cC unaltered as the marginal on BC,
but in correlation with A. An example is given by p =�

91

100

, 1

20

, 1

25

�
, q =

�
17

20

, 7

50

, 1

100

�
and qAB as in (5) with n =

1 and all ai =

1

120

. In m = 3 dimensions, majorization
and trumping are equivalent [21]; thus p

1

+ p
2

< q
1

+ q
2

implies p 6�T q, but one can verify the Rényi and Burg
entropy conditions for (6).

The following lemma shows that we can get many
more examples of this kind by checking the Rényi en-
tropies of orders ↵ � 1, and may thus be of independent
interest in itself:

Lemma 4. Let p, q 2 Rm be distributions such that q has
full rank, q 6=

�
1

m , . . . , 1

m

�
and H↵(p) < H↵(q) for all ↵ 2

[1,+1]. Then there is some a > 0 and n 2 N such that
pA ⌦ qB �T qAB , where ai := a/m in (5).

In the appendix, we prove this statement by showing
that H↵(pA ⌦ qB) < H↵(qAB) is true for all ↵ 6= 0 in the
limit n ! 1 (and similarly for H

Burg

), and by apply-
ing a standard uniformity argument which shows that
we can actually find a fixed finite n 2 N such that this
inequality is simultaneously true for all ↵.

The same proof strategy can be applied to obtain the
following lemma:

Lemma 5. Let p, q 2 Rm be distributions such that q has full
rank, H(p) < H(q), and q 6=

�
1

m , . . . , 1

m

�
. Then there exists

� > 0 and n 2 N such that H↵(pA ⌦ qB) < H↵(qAB) for all
↵ 2 [1,+1], where ai := qi � � in (5).

In order to prove Theorem 3, we may assume that
q 6=

�
1

m , . . . , 1

m

�
, and we remove common zeroes from

p and q until q has full rank. Lemma 5 gives us an
extension qAB of q = qA such that H↵(pA ⌦ qB) <
H↵(qAB) for all ↵ 2 [1,+1]. Applying Lemma 4 to
these two states yields an extension qABC of qAB such
that pA ⌦ qB ⌦ qC �T qABC , and thus a catalyst cD
such that pA ⌦ qB ⌦ qC ⌦ cD � qABC ⌦ cD. Majoriza-
tion is preserved by tensor products [6], hence we can
multiply this relation on both sides with another copy
qE = q = qA of q. Relabeling A $ E on the right-hand
side does not change the entries of the total probability
vector and the majorization order, hence

pA ⌦
�
qE ⌦ qB ⌦ qC ⌦ cD

�
� qA ⌦

�
qEBC ⌦ cD

�
.

This proves Theorem 3. Regarding CD as a single
system, we see that we have k = 3 catalysts in total.

Conclusions. We have shown that stochastic indepen-
dence can be used as a “fuel” to extract additional work
reliably from small quantum systems, with the von Neu-
mann entropy characterizing the possible state transi-
tions. This is in contrast to the thermodynamic limit,
where building up correlations always has a positive
work cost. We thus provide another example of a re-
source which, similarly as e.g. quantum coherence [28],
has crucial impact on thermodynamics in the micro-
scopic regime, but whose effect vanishes in the thermo-
dynamic limit.

From the mathematical side, we have defined a ma-
jorization relation which generalizes majorization and
trumping, and which turns out to uniquely character-
ize Shannon and von Neumann negentropies. This def-
inition captures the idea, detailed in several lemmas
and examples, that catalytic state transitions can be en-
hanced by allowing correlations to build up.

Our work opens up a number of interesting questions.
Are k = 2 catalysts always enough for c-trumping? Can
we give any bound on their sizes, similarly as for stan-
dard catalysis [29]? Is there a generalization of our result
to the resource theory of athermality, where quantum
states are allowed to carry non-trivial Hamiltonians? It
also seems worthwhile to look for concrete physical sit-
uations where local states ⌧i of large quantum systems,
interacting with other systems in a heat bath, are forced
to remain constant (say, due to local conservation laws).
Our result suggests that there could be a tendency to
build up correlations, similarly as there is a tendency to
thermalize if the purity of the local states is allowed to
decrease. This is particularly interesting due to the fact
that the transition from product to correlated states is
often regarded as an instance of an arrow of time.
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Appendix A: Basic definitions and notation

A probability distribution is a vector p 2 Rm with entries pi � 0 such that
Pm

i=1

pi = 1. The rank of a probability
distribution, rank(p), is defined as the number of nonzero entries of p. Thus 1  rank(p)  m, and we say that
p has “full rank” if rank(p) = m. In what follows, “log” denotes the natural logarithm, such that exp(log(x)) = x
for all x 2 R (in contrast to the main text, we are not using the binary logarithm in the appendix). We say that a
function f : I ! R with I ⇢ R is increasing if x < y ) f(x)  f(y) for all x, y 2 I , and that it is strictly increasing if
x < y ) f(x) < f(y) (analogous definitions apply to decreasing / strictly decreasing).

We start by defining the Rényi entropies, following the conventions of [4], as well as the Burg entropy [24].
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Definition 6. Let p 2 Rm be any probability distribution. For ↵ 2 R \ {0, 1}, we define the Rényi entropy of order ↵ as

H↵(p) :=
sgn(↵)

1� ↵
log

mX

i=1

p↵i ,

and for ↵ 2 {�1, 0, 1,+1}, we set

H
0

(p) := log rank(p), H
1

(p) ⌘ H(p) = �
mX

i=1

pi log pi, H1(p) := � logmax

i
pi, H�1(p) := logmin

i
pi.

The Burg entropy is defined as

H
Burg

(p) :=

mX

i=1

log pi.

If p does not have full rank then H↵(p) = H
Burg

(p) = �1 for all ↵ < 0.

Note that this choice of definition ensures continuity of H↵ in ↵ except at ↵ = 0, in the sense that

lim

↵!1
H↵(p) = H1(p), lim

↵!1

H↵(p) = H
1

(p), lim

↵!�1
H↵(p) = H�1(p), lim

↵&0

H↵(p) = H
0

(p).

However, lim↵%0

H↵(p) exists only if p has full rank, in which case it equals � logm = �H
0

(↵). It is elementary to
check that [4]

lim

↵&0

1� ↵

↵

�
H↵(p)� logm

�
= lim

↵%0

1� ↵

↵
(�H↵(p)� logm) =

1

m
H

Burg

(p) + logm. (A1)

Furthermore, Rényi entropy satisfies

H↵(p) 2
⇢

[0, logm] if ↵ � 0

[�1,� logm] if ↵ < 0,

and for every ↵ 6= 0, the maximal value sgn(↵) logm is attained if and only if p =

�
1

m , . . . , 1

m

�
, cf. [30]. The corre-

sponding statement for the Burg entropy is H
Burg

(p)  �m logm, with equality if and only if p =

�
1

m , . . . , 1

m

�
.

Definition 7 (Majorization [20]). Let p, q 2 Rm be probability distributions. We say that p majorizes q, and write p � q, if
and only if

kX

i=1

p#i �
kX

i=1

q#i for all k = 1, . . . ,m,

where p#
1

� p#
2

� . . . � p#m denotes the entries of p in descending order (and similarly for q). Furthermore, we say that p
trumps q, and write p �T q, if and only if there exists n 2 N and a probability distribution c 2 Rn such that

p⌦ c � q ⌦ c.

Klimesh [22] and Turgut [23] have proven that the trumping relation is closely related to the Rényi and Burg
entropies. In our notation, their result is as follows.

Lemma 8. Let p, q 2 Rm be probability distribution such that p# 6= q#. Then p �T q if and only if

H↵(p) < H↵(q) for all ↵ 2 R \ {0}, and H
Burg

(p) < H
Burg

(q).

Since we are interested in catalysis, we will in the following deal with multipartite (mostly bipartite) probability
distributions. In the bipartite case, we use the following notation. We denote the first system by A (of size m 2 N),
and the second by B (of size n 2 N). Joint distributions on AB will be denoted as matrices with entries (pAB)i,j :=

p(a = i, b = j). For example, if p = pA = (p
1

, . . . , pm) and q = qB = (q
1

, . . . , qn), then

pA ⌦ qB =

0

BBB@

p
1

q
1

p
1

q
2

p
1

q
3

. . . p
1

qn
p
2

q
1

p
2

q
2

p
2

q
3

. . . p
2

qn
...

...
...

...
pmq

1

pmq
2

pmq
3

. . . pmqn

1

CCCA
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In general, the marginal distributions on A resp. B can be obtained by summing over the rows resp. columns of pAB .
There is a specific bipartite probability distribution that will be important in what follows. If we have any probability
distribution q ⌘ qA = (q

1

, . . . , qm) 2 Rm, we consider the specific extension

qAB :=

0

BBB@

q
1

� a
1

a1
n

a1
n . . . a1

n
q
2

� a
2

a2
n

a2
n . . . a2

n
...

...
...

...
qm � am

am
n

am
n . . . am

n

1

CCCA
for any choice of ai 2 [0, qi] and n 2 N. (A2)

This is an m⇥ (n+ 1) matrix, and a bipartite probability distribution with marginal qA on A. Clearly

qB =

⇣
1� a,

a

n
, . . . ,

a

n

⌘
2 Rn+1, where a =

mX

i=1

ai.

Appendix B: Detailed mathematical proof of the main theorem

As described in the main text, we need two lemmas. The first one is as follows.

Lemma 9. Let p, q 2 Rm be probability distributions such that q has full rank, H(p) < H(q), and q 6=
�

1

m , . . . , 1

m

�
. Then

there exists some � 2 (0,mini qi) and N 2 N such that for ai := qi � � and qAB as in (A2), the following statement is true for
all n � N :

H↵(pA ⌦ qB) < H↵(qAB) for all ↵ 2 [1,+1].

Proof. Note that p 6=
�

1

m , . . . , 1

m

�
because H(p) < H(q) < logm. In the following, we will always assume that ↵ > 1,

↵ 2 R (unless stated otherwise). With the given choice of ai, we get a =

Pm
i=1

ai = 1 �m�. Consider the following
expression:

�

(↵)
n := H↵(qAB)�H↵(qB)�H↵(pA) =

1

1� ↵
log

m�↵ + n1�↵
Pm

i=1

(qi � �)↵

(

Pm
i=1

p↵i ) (m
↵�↵ + (1�m�)↵n1�↵

)

.

We use the expression on the right-hand side to define �

(↵)
n also for non-integer n � 1. We have to show that this

expression is positive for all ↵ if n is large enough. In fact, in the limit,

lim

n!1
�

(↵)
n = logm�H↵(p) > 0 for all ↵ > 1, (B1)

which is however only a pointwise statement. We furthermore need the fact that

�

(↵)
n is strictly increasing in n if ↵ 2 (1,1). (B2)

To see this, simply take the derivative:

@

@n
�

(↵)
n = n↵�2�↵(b

2

� b
1

), where b
1

=

m

n↵�1m�↵ +

Pm
i=1

(qi � �)↵
> 0, b

2

=

m↵

n↵�1m↵�↵ + (1�m�)↵
> 0.

Since the (non-uniform) probability distribution with the m entries qi��
1�m� satisfies H↵

⇣⇣
qi��
1�m�

⌘

i

⌘
< logm, we have

Pm
i=1

⇣
qi��
1�m�

⌘↵
> m1�↵, and thus

b
1

b
2

=

n↵�1m�↵ +m1�↵
(1�m�)↵

n↵�1m�↵ +

Pm
i=1

⇣
qi��
1�m�

⌘↵
(1�m�)↵

< 1,

hence b
1

< b
2

, which proves (B2). Furthermore, for ↵ = 1, we have

�

(1)

n := H(qAB)�H(qB)�H(pA) = m� logm�
mX

i=1

(qi � �) log
qi � �

1�m�
�H(pA),
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and this expression is independent of n. Since lim�&0

�

(1)

n = H(qA) �H(pA) > 0, there exists some � 2 (0,mini qi)

such that with this choice of �, we have �

(1)

n > 0. So let us choose and fix this � for all that follows. By continuity, for
n = 1, there exists some " > 0 such that �(↵)

n=1

> 0 for all 1  ↵  1 + ", and due to (B2)

�

(↵)
n > 0 for all n 2 N and 1  ↵  1 + ". (B3)

Furthermore, if n is large enough, then we have the exact equality

�

(1)

n := H1(qAB)�H1(qB)�H1(pA) = logm�H1(pA) > 0.

Therefore, a standard compactness argument for the interval [1 + ",+1], together with (B1) and (B2), shows that
there exists some N 2 N such that for all n � N , we have �

(↵)
n > 0 for all ↵ in that interval. Together with (B3), this

proves the claim.

Lemma 10. Let p, q 2 Rm be probability distributions such that q has full rank, q 6=
�

1

m , . . . , 1

m

�
, and H↵(p) < H↵(q) for all

↵ 2 [1,+1]. Then there exists some a 2 (0,m ·mini qi) such that for qAB as given in (A2) with ai := a/m, we have

pA ⌦ qB �T qAB for all n � N.

Proof. First consider the case that p has full rank. Note that p 6=
�

1

m , . . . , 1

m

�
since H

1

(p) < H
1

(q) < logm. We will
use the criterion in Lemma 8 to prove trumping. First note that

H
Burg

(qAB) =

mX

i=1

log

⇣
qi �

a

m

⌘
+mn log

a

mn
, H

Burg

(pA ⌦ qB) = (n+ 1)

mX

i=1

log pi +m
⇣
log(1� a) + n log

a

n

⌘
.

It is then elementary to see that the inequality H
Burg

(pA ⌦ qB) < H
Burg

(qAB) is equivalent to

mX

i=1

log pi + n

 
mX

i=1

log pi +m logm

!

| {z }
(⇤)

+m log(1� a) <

mX

i=1

log

⇣
qi �

a

m

⌘
.

Since
Pm

i=1

log pi = H
Burg

(p) < �m logm, the factor (⇤) is negative. Hence this inequality is true if n is large enough;
in other words, there exists N(a) 2 N (which may depend on the choice of a) such that

H
Burg

(pA ⌦ qB) < H
Burg

(qAB) for all n � N(a). (B4)

For all ↵ 2 [�1,+1], define the quantity

˜

�

(↵)
n := H↵(qAB)�H↵(qB)�H↵(pA).

If ↵ = 0 this equals 0; for general finite ↵ 6= 1, it is

˜

�

(↵)
n =

sgn(↵)

1� ↵
log

Pm
i=1

�
qi � a

m

�↵
+ n1�↵a↵m1�↵

(

Pm
i=1

p↵i )
�
(1� a)↵ + n1�↵a↵

�
(↵ 2 R \ {1}).

First we prove the following:

˜

�

(↵)
n is

8
>>><

>>>:

eventually constant in n if ↵ = �1
increasing in n if �1 < ↵ < 1

constant in n if ↵ = 1

decreasing in n if 1 < ↵ < +1
eventually constant in n if ↵ = +1.

(B5)

By “eventually constant”, we mean that there is some N 2 N such that for all n � N , we have ˜

�

(↵)
n =

˜

�

(↵)
N . This is the

case for ↵ = �1 and ↵ = +1, because in this case, all entropies only depend on the minimal resp. maximal entries
of qAB resp. qB ; if n is large, the location of these extrema is fixed, and direct calculation shows that all n-dependency
cancels out. The special case ↵ = 0 is easily checked directly, too. For ↵ = 1, direct calculation shows that

˜

�

(1)

n = �
mX

i=1

⇣
qi �

a

m

⌘
log

⇣
qi �

a

m

⌘
+ a logm+ (1� a) log(1� a)�H(p) (B6)
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which is independent of n. For the remaining cases ↵ 2 R \ {0, 1}, differentiate:

@

@n
˜

�

(↵)
n =

⇣a
n

⌘↵
sgn(↵)(c

1

�c
2

), where c
1

=

m1�↵

Pm
i=1

�
qi � a

m

�↵
+ n1�↵a↵m1�↵

> 0, c
2

=

�
(1� a)↵ + n1�↵a↵

��1

> 0.

Similarly as in the proof of Lemma 9, one can show that

mX

i=1

⇣
qi �

a

m

⌘↵⇢ � m1�↵
(1� a)↵ if ↵ < 0 or ↵ > 1

 m1�↵
(1� a)↵ if 0 < ↵ < 1,

and thus

c
1

c
2

=

m1�↵
(1� a)↵ + n1�↵a↵m1�↵

Pm
i=1

�
qi � a

m

�↵
+ n1�↵a↵m1�↵

⇢
 1 if ↵ < 0 or ↵ > 1

� 1 if 0 < ↵ < 1.

This yields the sign of c
1

� c
2

and thus of @
@n

˜

�

(↵)
n for all values of ↵ and proves (B5). By direct calculation, the large-n

limit of ˜

�

(↵)
n evaluates to

lim

n!1
˜

�

(↵)
n =

8
>><

>>:

� logm�H↵(p) if ↵ 2 [�1, 0)
logm�H↵(p) if ↵ 2 (0, 1)

expression (B6) above if ↵ = 1

H↵

⇣⇣
qi�a/m

1�a

⌘

i

⌘
�H↵(p) if ↵ 2 (1,+1]

(B7)

which is discontinuous at ↵ = 0 and ↵ = 1.
So far, a 2 (0,m ·mini qi) was arbitrary; now we are going to fix the value of a. Define p

max

:= maxi pi, qmax

:=

maxi qi. Since H1(p) < H1(q), we have p
max

> q
max

. Thus, there exists some a1 > 0 such that

H1

✓✓
qi � a

m

1� a

◆

i

◆
�H1(p) = log p

max

� log

q
max

� a
m

1� a
> 0 for all 0  a  a1.

Therefore, since H1 = lim↵!1 H↵, there exists some ↵1 2 R such that

H↵

✓✓
qi � a1

m

1� a1

◆

i

◆
�H↵(p) > 0 for all ↵ � ↵1. (B8)

For every ↵ 2 [1,↵1], choose some a↵ 2 (0, a1) such that

H↵

✓✓
qi � a↵

m

1� a↵

◆

i

◆
�H↵(p) > 0.

Such an a↵ always exists due to H↵(q)�H↵(p) > 0 and continuity of H↵. Choose "↵ > 0 such that

H�

✓✓
qi � a↵

m

1� a↵

◆

i

◆
�H�(p) > 0 for all � 2 [1,↵1] \ (↵� "↵,↵+ "↵). (B9)

Furthermore, note that

for all ↵ 2 [0,+1], the function a 7! H↵

✓✓
qi � a

m

1� a

◆

i

◆
is decreasing on the interval [0,m ·min

i
qi].

This follows from the observation that for a, b 2 [0,m·mini qi] with a  b, the probability distribution [(qi�b/m)/(1�
b)]i majorizes the probability distribution [(qi � a/m)/(1 � a)]i, and the Rényi entropies H↵ with ↵ � 0 are Schur
concave [17, 20].

Thus, (B9) is also satisfied if a↵ is replaced by any a 2 (0, a↵]. The intervals (↵ � "↵,↵ + "↵) constitute an open
cover of [1,↵1]. Since this is a compact interval, there is a finite subcover, indexed by ↵

1

, . . . ,↵m 2 [1,↵1], with
m 2 N finite. Now set a0 := mini=1,...,m a↵i . Combining (B8) and (B9), we get

H↵

✓✓
qi � a

m

1� a

◆

i

◆
�H↵(p) > 0 for all ↵ 2 [1,+1], 0  a  a0.
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Due to (B5) and (B7), we thus obtain

˜

�

(↵)
n � lim

n!1
˜

�

(↵)
n = H↵

✓✓
qi � a

m

1� a

◆

i

◆
�H↵(p) > 0 for all ↵ 2 (1,+1], a 2 (0, a0], n 2 N

(recall that ˜

�

(↵)
n depends on the choice of a). Due to (B6), we have lima&0

˜

�

(1)

n = H(q) � H(p) > 0, so there exists
a 2 (0, a0) such that ˜

�

(1)

n=1

> 0 for this choice of a. We now fix this value of a for all that follows. Due to continuity,
there exists " > 0 such that ˜

�

(↵)
n=1

> 0 for all ↵ 2 [1 � ", 1]. According to (B5), this implies that ˜

�

(↵)
n > 0 for all

↵ 2 [1� ", 1] and all n 2 N. In summary, we have achieved that

˜

�

(↵)
n > 0 for all n 2 N, ↵ 2 [1� ",+1]. (B10)

Next we consider ↵ 2 (0, 1� "). Since ˜

�

(0)

n = 0 for all n is not useful as a special case, we define another quantity

¯

�

(↵)
n :=

(
1�↵
|↵|

˜

�

(↵)
n if ↵ 2 R \ {0}

1

m(n+1)

�
H

Burg

(qAB)�H
Burg

(pA ⌦ qB)
�

if ↵ = 0.

The resulting quantity is continuous in ↵, also at ↵ = 0 due to (A1). Using that H
Burg

⇣⇣
qi�a/m

1�a

⌘

i

⌘
< �m logm, it is

straightforward to check that

@

@n
¯

�

(0)

n =

m log

1�a
m �

Pm
i=1

log

�
qi � a

m

�

m(n+ 1)

2

> 0,

hence ¯

�

(0)

n is strictly increasing in n. The large-n limit is

lim

n!1
¯

�

(0)

n = � 1

m
H

Burg

(p) > 0.

Considering only ↵ 2 [0, 1�"], the ¯

�

(↵)
n are an increasing sequence of continuous functions on this compact interval,

converging pointwise to a strictly positive value due to (B5) and (B7). Thus, a standard compactness argument
proves that there exists some N 0 2 N such that ¯

�

(↵)
n > 0 for all n � N 0 and ↵ 2 [0, 1� "], hence

˜

�

(↵)
n > 0 for all n � N 0, ↵ 2 (0, 1� "]. (B11)

Now we come to the case ↵ < 0. According to (B5) and (B7), there exists N 00 2 N such that for all n � N 00, it holds
˜

�

(�1)

n = � logm�H1(p) > 0. Due to continuity, there is some ↵�1 2 R such that ˜

�

(↵)
N 00 > 0 for all ↵ 2 [�1,↵�1],

and thus (again due to (B5))

˜

�

(↵)
n > 0 for all n � N 00, ↵ 2 [�1,↵�1]. (B12)

Finally we treat the range ↵ 2 (↵1, 0). Arguing as above, the ¯

�

(↵)
n are an increasing sequence of continuous functions

on the compact interval [↵�1, 0], converging pointwise to a strictly positive value. By compactness there exists
N 000 2 N such that ¯

�

(↵)
n > 0 for all n � N 000, and thus

˜

�

(↵)
n > 0 for all n � N 000, ↵ 2 [↵�1, 0). (B13)

Combining (B4), (B10), (B11), (B12), and (B13), and setting N := max{N(a), N 0, N 00, N 000}, we get

H↵(pA ⌦ qB) < H↵(qAB) for all ↵ 2 R \ {0} and H
Burg

(pA ⌦ qB) < H
Burg

(qAB) for all n � N.

Clearly (pA ⌦ qB)
# 6= q#AB , because otherwise we would have H(pA ⌦ qB) = H(qAB). Thus, Lemma 8 proves that

pA ⌦ qB �T qAB .
We have proven the statement of the lemma in the case that p has full rank. Now consider the case that rank(p) <

m. Since q and thus qAB has full rank, we only have to show that H↵(pA ⌦ qB) < H↵(qAB) for all ↵ 2 (0,+1). To
this end, we can simply repeat the proof above with a few small changes. First, the cases of Burg entropy and Rényi
entropy for ↵ < 0 can be ignored. Second, the proof of (B10) remains valid, but the proof of (B11) has to be changed:
instead of ¯

�

(↵)
n , we have to consider the quantity ˜

�

(↵)
n directly, which now satisfies ˜

�

(0)

n = logm � H
0

(p) > 0 for
all n. The rest of the argumentation remains unchanged, proving the statement of the lemma also for the case that p
does not have full rank.
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Combining the previous two lemmas yields a first formulation of our main result.

Lemma 11. Let p, q 2 Rm be probability distributions such that q has full rank. If H(p) < H(q) then there exists k 2 N (in
fact, we can always choose k = 3) and a k-partite state r

1,2,...,k with marginals r
1

, r
2

, . . . , rk such that

p⌦
�
r
1

⌦ r
2

⌦ . . .⌦ rk
�
� q ⌦ r

1,2,...,k.

Proof. The special case that q =

�
1

m , . . . , 1

m

�
is trivial: in this case p � q, and we can simply set k = 0 (no catalyst), or

alternatively k = 1 with an arbitrary catalyst.
So suppose q 6=

�
1

m , . . . , 1

m

�
. We first apply Lemma 9 to conclude that there exists some extension qAB of q = qA

such H↵(pA ⌦ qB) < H↵(qAB) for all ↵ 2 [1,+1]. Clearly the extension qAB given in that lemma has full rank, but
is not a uniform distribution. Therefore, we can apply Lemma 10 to the two states pA ⌦ qB and qAB , and obtain the
existence of an extension qABC (introducing a third system C) of qAB such that

(pA ⌦ qB)⌦ qC �T qABC .

By definition of catalysis, there is an additional system D and a catalyst (probability distribution) cD on D such that

pA ⌦ qB ⌦ qC ⌦ cD � qABC ⌦ cD.

Since the majorization relation is invariant with respect to tensor product with another probability distribution, we
obtain

pA ⌦ qB ⌦ qC ⌦ cD ⌦ qE � qABC ⌦ cD ⌦ qE ,

where qE = q = qA is another copy of q (note however that qB and qC are in general not copies of q = qA). Swapping
systems A and E on the right-hand side does not alter the probability values and the majorization order, thus

pA ⌦ (qE ⌦ qB ⌦ qC ⌦ cD) � qA ⌦ (qEBC ⌦ cD).

If we regard CD as a single system (which we may, since the marginal of qEBC ⌦ cD on CD is qC ⌦ cD), we see that
we have k = 3 subsystems in addition to system A.

Theorem 12. Let p, q 2 Rm be probability distributions with p# 6= q#. Then there exists k 2 N
0

and a finite k-partite
probability distribution r

1,2,...,k such that

p⌦ (r
1

⌦ r
2

⌦ . . .⌦ rk) � q ⌦ r
1,2,...,k (B14)

if and only if rank(p)  rank(q) and H(p) < H(q).

Proof. Suppose there exists a catalyst r
1,2,...,k with the stated properties. Then we can apply additivity and subaddi-

tivity [25, 26] as well as Schur concavity [20] of the Rényi entropies of orders ↵ = 0 and ↵ = 1 (Hartley and Shannon
entropy) and obtain

H↵(p) +

kX

i=1

H↵(ri)  H↵(q) +H↵(r1,2,...,k)  H↵(q) +

kX

i=1

H↵(ri).

Since H
0

(p) = log rank(p), this shows that rank(p)  rank(q). For Shannon entropy H = H
1

, we obtain equality in the
second inequality of this expression (subadditivity) if and only if r

1,2,...,k = r
1

⌦ r
2

⌦ . . .⌦ rk; this follows inductively
from the fact that the mutual information of two random variables is zero if and only if the joint bipartite probability
distribution factorizes [31]. So if we had H(p) = H(q) then p ⌦ (r

1

⌦ r
2

⌦ . . .⌦ rk) � q ⌦ (r
1

⌦ r
2

⌦ . . .⌦ rk), or
p �T q. But then Lemma 8 would prove that H(p) < H(q), which is a contradiction.

Conversely, suppose that p, q 2 Rm are probability distributions that are not equal up to permutation and satisfy
rank(p)  rank(q) and H(p) < H(q). Without loss of generality we may assume that p# = p and q# = q, i.e. that the
entries of p and q are in descending order. Let ` := rank(q), then `  m and q = q̃� 0m�`, where q̃ = (q

1

, . . . , q`) 2 R`

has full rank, and 0m�` = (0, . . . , 0) 2 Rm�` is the zero vector of dimension m � `. Since rank(p)  rank(q) = `,
we can also write p = p̃ � 0m�`, where p̃ 2 R` does not necessarily have full rank. Then (B14) for some probability
distribution r

1,2,...,k is equivalent to

p̃⌦ (r
1

⌦ r
2

⌦ . . .⌦ rk) � q̃ ⌦ r
1,2,...,k.

Since H(p̃) = H(p) < H(q) = H(q̃), and since q̃ has full rank, Lemma 11 applies and shows that a probability
distribution r

1,2,...,k exists that satisfies this relation.
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Appendix C: Pure and maximally mixed catalysts are useless

Suppose that one of the catalysts ⌧i is a pure or maximally mixed state, and we have c-trumping as in (4). We may
relabel the catalysts such that, without loss of generality, i = k.

In the case that ⌧i = ⌧k is a pure state, this implies that ⌧
1,2,...,k is a product state. Thus, (4) becomes

⇢⌦ (⌧
1

⌦ ⌧
2

⌦ . . . ⌧k�1

)⌦ ⌧k � � ⌦ ⌧
1,2,...,(k�1)

⌦ ⌧k.

By considering the sets of eigenvalues of both sides of this relation, it is clear that the relation is equivalent to

⇢⌦ (⌧
1

⌦ ⌧
2

⌦ . . . ⌧k�1

) � � ⌦ ⌧
1,2,...,(k�1)

,

that is, we can simply disregard ⌧k without altering the c-trumping relation: pure catalysts are useless.
An analogous conclusion holds for maximally mixed catalysts. To this end, suppose that ⌧k = 1d/d, the maximally

mixed state on Cd. We argue within the resource theory of nonuniformity as introduced in [16], using notation
from [17]. We write ⇢ noisy�! � for two quantum state ⇢ and �, both living on Hilbert spaces of possibly different but
finite dimensions, if and only if there exists a “noisy operation” that maps ⇢ to �. A noisy operation is a map of the
form

⇢A 7! TrE

h
UAB (⇢A ⌦ �B)U

†
AB

i
,

where B is a d-dimensional quantum system, and �B = 1d/d the maximally mixed state on B; moreover, AB = DE
are two bipartitions of the same Hilbert space, such that the resulting density matrix is a state on D. In the case
where A and D have the same dimension, we have ⇢ noisy�! � to arbitrary accuracy if and only if ⇢ � �. The former
statement means that for every " > 0 there is a state �" such that k� � �"k1 < " and ⇢ noisy�! �". Let us write ⇢ �! � if
this is the case.

Adding maximally mixed states and taking partial traces are both noisy operations. Thus, if ⌧k is the maximally
mixed state, (4) implies

⇢⌦ (⌧
1

⌦ . . .⌦ ⌧k�1

) �! ⇢⌦ (⌧
1

⌦ . . .⌦ ⌧k�1

⌦ ⌧k) �! � ⌦ ⌧
1,...,k �! � ⌦ ⌧

1,...,(k�1)

.

Hence ⇢⌦ (⌧
1

⌦ . . .⌦ ⌧k�1

) � � ⌦ ⌧
1,...,(k�1)

, and again we can remove ⌧k without altering the c-trumping relation.
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